By STANLEY JORDAN
A few snippets of protein extracted from the fossil of an extinct species of giant beaver from the New York State Museum’s collections are opening a new door in paleoproteomics, the study of ancient proteins. Ancient proteins can be used to place animals on the evolutionary tree, and could offer insights into how life and Earth’s environment have evolved over time. Typically, paleoproteomics relies on fossils collected for the purpose. But in a paper published today in the Proceedings of the Royal Society B, researchers at Rensselaer Polytechnic Institute (RPI) used a giant beaver fossil collected more than 170 years ago in central New York, and housed at the New York State Museum.
“Paleoproteomics is a young field. We don’t yet know the full potential of the information it may offer us, and one barrier to that is the supply of fossils we can call upon for research,” said Deepak Vashishth, professor of biomedical engineering and director of the Rensselaer Center for Biotechnology and Interdisciplinary Studies. “In developing these techniques, we’re creating new value in fossils that are already on exhibit, or sitting in storage waiting for a purpose.”
The team of researchers extracted proteins from the first skull of the species Castoroides ohioensis ever found. Collected in 1845, the giant beaver skull is the oldest museum-curated bony specimen to have been studied using paleoproteomic tools. The researchers were searching for proteins, chains of amino acids assembled from instructions encoded in DNA that perform a wide variety of functions in living organisms. Using mass spectrometry analysis, researchers detected many samples of collagen 1, the most common protein in bone.
“This research not only provides exciting information about a New York State Museum specimen of unique significance—the first discovered and documented giant beaver skull in the world—it also highlights the critical role museum collections play in research and discovery,” said Robert Feranec, New York State Museum curator of vertebrate paleontology. “Without maintaining collections rich in diversity of specimens, both ancient and modern, similar research that examines these windows into our past would not be possible.”
Comments Disabled By Site.
You may, however, comment through Facebook.